资源类型

期刊论文 47

年份

2023 3

2022 3

2021 4

2020 3

2019 1

2017 2

2015 1

2014 1

2013 1

2012 7

2011 4

2010 4

2009 2

2008 3

2007 2

2005 1

2004 1

2003 1

展开 ︾

关键词

低渗透 3

裂缝 3

低渗透油田 2

压裂 2

各向异性 2

无源微地震 2

渗透率 2

CCS 1

CO2-ECBM 1

X 射线成像 1

k-ε模型 1

中国油气田开发 1

主流 1

代数应力湍流模型 1

低孔渗储层 1

低渗 1

低渗透储层 1

低透气性煤层 1

体积流 1

展开 ︾

检索范围:

排序: 展示方式:

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 171-179 doi: 10.1007/s11709-011-0103-0

摘要: This paper presents an uncoupled state space solution to three-dimensional consolidation of layered poroelastic medium with anisotropic permeability and compressible pore fluid. Starting from the basic equations of poroelastic medium, and introducing intermediate variables, the state space equation usually comprising eight coupled state vectors is uncoupled into two sets of equations of six and two state vectors in the Laplace-Fourier transform domain. Combined with the continuity conditions between adjacent layers and boundary conditions, the uncoupled state space solution of a layered poroelastic medium is obtained by using the transfer matrix method. Numerical results show that the anisotropy of permeability and the compressibility of pore fluid have remarkable influence on the consolidation behavior of poroelastic medium.

关键词: uncoupled state space solution     layered poroelastic medium     three-dimensional consolidation     anisotropic permeability     compressible pore fluid    

Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete

Alireza DANESHYAR, Hamid MOHAMMADNEZHAD, Mohsen GHAEMIAN

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 346-363 doi: 10.1007/s11709-021-0694-z

摘要: Seismic modeling of massive structures requires special caution, as wave propagation effects significantly affect the responses. This becomes more crucial when the path-dependent behavior of the material is considered. The coexistence of these conditions renders numerical earthquake analysis of concrete dams challenging. Herein, a finite element model for a comprehensive nonlinear seismic simulation of concrete gravity dams, including realistic soil–structure interactions, is introduced. A semi-infinite medium is formulated based on the domain reduction method in conjunction with standard viscous boundaries. Accurate representation of radiation damping in a half-space medium and wave propagation effects in a massed foundation are verified using an analytical solution of vertically propagating shear waves in a viscoelastic half-space domain. A rigorous nonlinear finite element model requires a precise description of the material response. Hence, a microplane-based anisotropic damage–plastic model of concrete is formulated to reproduce irreversible deformations and tensorial degeneration of concrete in a coupled and rate-dependent manner. Finally, the Koyna concrete gravity dam is analyzed based on different assumptions of foundation, concrete response, and reservoir conditions. Comparison between responses obtained based on conventional assumptions with the results of the presented comprehensive model indicates the significance of considering radiation damping and employing a rigorous constitutive material model, which is pursued for the presented model.

关键词: soil–structure interaction     massed foundation     radiation damping     anisotropic damage    

Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay

Lingyun YOU, Zhanping YOU, Kezhen YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 110-122 doi: 10.1007/s11709-018-0476-4

摘要: Asphalt concrete (AC) overlays placed over old asphalt pavement have become an alternative to repairing and reinforcing pavements. The strength contributed by the AC overlay is strongly influenced by the anisotropic properties of the pavement material. This study was conducted to analyze the influence of anisotropy, modulus gradient properties, and the condition of the AC overlay and old pavement contact plane on the mechanical behaviors of AC overlays, as well as to quantify the influence of the degree of anisotropy on the mechanical behaviors of AC overlay by a sensitivity analysis (SA). The mechanical behaviors of the AC overlay were numerically obtained using the three-dimensional finite element method with the aid of ABAQUS a commercial program. Variations in the AC overlay’s modulus as a function of temperature as well as the contact state between the AC overlay and AC layer were considered. The SA is based on standardized regression coefficients method. Comparing the mechanical behavior in terms of surface deflection, stress, and strain of the anisotropy model against those corresponding to the isotropic model under static loads show that the anisotropic properties had greater effects on the mechanical behavior of the AC overlay. In addition, the maximum shear stress in the AC overlay was the most significant output parameter affected by the degree of anisotropy. Therefore, future research concerning the reinforcement and repair of pavements should consider the anisotropic properties of the pavement materials.

关键词: asphalt concrete overlay     anisotropy     temperature gradients     modulus gradients     finite element simulation     sensitivity analysis    

Degradation of permeability resistance of high strength concrete after combustion

LI Min, QIAN Chunxiang, KAO Hongtao

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 281-287 doi: 10.1007/s11709-008-0031-9

摘要: To evaluate the remaining durability of concrete materials after combustion, the permeability of high strength concrete (HSC) after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion permeability coefficient (), water permeability coefficient () and air permeability coefficient (). The experiment results show that all three permeability coefficients commendably reflect changes of permeability. The permeability coefficient increases with the evaluation temperature. After the same temperature, the permeability coefficient of HSC is lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt. Combining changes of compressive strength and permeability, the remaining durability of concrete materials after combustion is appropriately evaluated.

关键词: transport behavior     limestone     durability     permeability     HSC    

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

《结构与土木工程前沿(英文)》   页码 1264-1280 doi: 10.1007/s11709-023-0921-x

摘要: In this study, mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (XRμCT) were used to characterize the pore structures and investigate the permeability characteristics of clay after aging and contamination with diesel. The results of the MIP tests showed that aging leads to reductions in porosity and average diameter, as well as an increase in tortuosity. The XRμCT analysis yielded consistent results; it showed that aging renders pores more spherical and isotropic and pore surfaces smoother. This weakens the pore connectivity. Micromorphological analysis revealed that aging led to the rearrangement of soil particles, tighter interparticle overlapping, and a reduction in pore space. The combination of MIP and XRμCT provided a comprehensive and reliable characterization of the soil pore structure. An increased diesel content increased the porosity and average diameter and reduced the tortuosity of the pores. Mechanistic analysis showed that aging weakens interparticle cohesion; this causes large agglomerates to break down into smaller agglomerates, resulting in a tighter arrangement and a subsequent reduction in porosity. An increase in diesel content increases the number of large agglomerates and pore spaces between agglomerates, resulting in increased porosity. Both aging and diesel content can weaken the permeation characteristics of soil.

关键词: MIP     XRμCT     aging     diesel content     pore structure     permeability characteristics    

Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview

Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 405-413 doi: 10.1007/s11705-017-1615-5

摘要: The possibility to evaluate in a predictive way the relevant transport properties of low molecular weight species, both gases and vapors, in glassy polymeric membranes is inspected in detail, with particular attention to the methods recently developed based on solid thermodynamic basis. The solubility of pure and mixed gases, diffusivity and permeability of single gases in polymer glasses are examined, considering in particular poly(2,6-dimethyl-1,4-phenylene oxide) as a relevant test case. The procedure clearly indicates what are the relevant physical properties of the polymer matrix and of the penetrants required by the calculations, which can be obtained experimentally through independent measurements. For gas and vapor solubility, the comparison with direct experimental data for mixed gases points out also the ability to account for the significant variations that solubility-selectivity experiences upon variations of pressure and/or feed composition. For gas and vapor permeability, the comparison with direct experimental data shows the possibility to account for the various different trends observed experimentally as penetrant pressure is increased, including the so-called plasticization behavior. The procedure followed for permeability calculations leads also to clear correlations between permeability and physical properties of both polymer and penetrant, based on which pure predictive calculations are reliably made.

关键词: solubility     permeability     glassy polymers     NELF model     diffusion    

Effect of mineral additives and permeability reducing admixtures having different action mechanisms on

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1277-1291 doi: 10.1007/s11709-021-1752-2

摘要: In this paper, the effect of usage of the permeability reducing admixture (PRA) having different action mechanisms on hardened state properties of cementitious systems containing mineral additives is examined. For this aim, three commercial PRAs were used during investigation. The effective parameters in the first and third PRAs were air-entraining and high-rate air-entraining, respectively. The second one contained the insoluble calcium carbonate residue and had a small amount of the air-entraining property. Mortar mixes with binary and ternary cementitious systems were prepared by partially replacing cement with fly ash and metakaolin. The hardened state properties of mortar mixtures such as compressive strength, ultrasonic pulse velocity, water absorption, drying shrinkage and freeze–thaw resistance were investigated. The ternary cement-based mixture having both fly ash and metakaolin was selected as the most successful mineral-additive bearing mix in regard to hardened state properties. In this sense, PRA-B, with both insoluble residues and a small amount of air-entraining properties, showed the best performance among the mixtures containing PRA. The combined use of mineral additive and PRA had a more positive effect on the properties of the mixes.

关键词: cementitious system     mineral additive     permeability reducing admixture     mechanical properties     durability performance    

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 109-123 doi: 10.1007/s11709-021-0693-0

摘要: The anisotropy of rockfill materials has a significant influence on the performance of engineering structures. However, relevant research data are very limited, because of the difficulty with preparing specimens with different inclination angles using traditional methods. Furthermore, the anisotropy test of rockfill materials is complex and complicated, especially for triaxial tests, in which the major principal stress plane intersects with the compaction plane at different angles. In this study, the geometric characteristics of a typical particle fraction consisting of a specific rockfill material were statistically investigated, and the distribution characteristics of particle orientation in specimens prepared via different compaction methods were examined. For high-density rockfill materials, a set of specimen preparation devices for inclined compaction planes was developed, and a series of conventional triaxial compression tests with different principal stress direction angles were conducted. The results reveal that the principal stress direction angle has a significant effect on the modulus, shear strength, and dilatancy of the compacted rockfill materials. Analysis of the relationship between the principal stress direction angles, change in the stress state, and change in the corresponding dominant shear plane shows that the angle between the compacted surface and dominant shear plane is closely related to interlocking resistance associated with the particle orientation. In addition, different principal stress direction angles can change the extent of the particle interlocking effect, causing the specimen to exhibit different degrees of anisotropy.

关键词: rockfill     inclination of specimen preparation     anisotropy     mechanical property     mechanism    

宏观裂缝混凝土中表观气体渗透率的测定 Article

Pierre Rossi

《工程(英文)》 2022年 第17卷 第10期   页码 93-98 doi: 10.1016/j.eng.2020.11.008

摘要:

本文报道了一项旨在测定开裂混凝土表观气体渗透率的实验研究分析。由于难以对气体渗透率进行可靠的实验测试,国际文献中缺乏对这一问题的研究。本研究的主要目的是提供新颖可靠的实验结果,并提出表观裂缝渗透率演化与表观裂缝张开度之间的解析函数。考虑Poiseuille 定律,这些函数似乎是相关的。

关键词: 混凝土     宏观裂缝     气体传输     渗透率    

Preparation and permeability of ZSM-35 zeolite membranes on porous stainless steel tubes

ZHU Gang, WANG Jinqu, ZHANG Yan, LU Jinming, XIU Jinghai

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 217-220 doi: 10.1007/s11705-007-0039-z

摘要: ZSM-35 zeolite membranes were prepared on porous stainless steel tubes with silica sol and tetraethoxysilane as silica source, and with 1-butylamine and ethylenediamine as templates, respectively. The characterization of X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the membranes prepared with ethylenediamine as the template displayed growth orientation with their crystal planes (h00) parallel to the support surface. The single-component permeability tests of H, N and CH showed that the membranes synthesized with ethylenediamine as the template, compared with those with 1-butylamine as the template, showed relatively higher permeation rates and ideal separation factors, and above their corresponding ideal Knudsen diffusion factors, which might be attributed to the different growth orientation of zeolite membranes synthesized with different templates.

关键词: single-component permeability     diffusion     different     permeation     orientation    

Permeability testing of drilling core sample from pavement

WANG Suda, TANG Zhengguang, NING Xiaojun, WU Peiguan, XING Pingyi

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 391-394 doi: 10.1007/s11709-008-0045-3

摘要: The permeability coefficient of pavement material is a very important parameter in designing the drainage of pavement structures and is also used to evaluate the quality of road construction. New equipment is used to measure the permeability coefficient of the pavement drilling core sample and relevant testing methods are introduced. Testing drilling core samples from a certain highway of Yunnan province has been proven to be feasible. The test results are also analyzed.

关键词: province     material     feasible     permeability coefficient     equipment    

中国低渗透油气的现状与未来

胡文瑞

《中国工程科学》 2009年 第11卷 第8期   页码 29-37

摘要:

中国低渗透油气资源丰富,具有很大的勘探开发潜力。近20年来,在低渗透砂岩、海相碳酸盐岩、火山岩勘探方面取得了很大发现,形成了国际一流的开发配套技术,实现了低渗透油气藏的规模有效开发,低渗透油气产量持续上升,其在产量构成中所占比例逐年增加。无论从近几年新增探明储量还是从剩余油气资源量看,低渗透油气都是今后勘探开发的主要对象,低渗透油气是中国未来油气工业的勘探开发主流,对保障国家能源安全具有重要的战略意义。

关键词: 低渗透     油气     勘探开发     主流     现状未来     技术    

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1470-1483 doi: 10.1007/s11705-023-2329-5

摘要: In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

关键词: forward osmosis membrane     graphene oxide quantum dots     graft modification     anti-fouling membrane     XDLVO theory    

Permeability and thermal conductivity of host compressed natural graphite for consolidated activated

Bo TIAN, Liwei WANG, Zhequan JIN, Ruzhu WANG

《能源前沿(英文)》 2011年 第5卷 第2期   页码 159-165 doi: 10.1007/s11708-011-0145-y

摘要: Permeability and thermal conductivity test units were set up to study the heat and mass transfer performance of the host material, i.e. expanded natural graphite (ENG), for consolidated activated carbon (AC) adsorbent. The permeability was tested with nitrogen as the gas source, and the thermal conductivity was studied using steady-state heat source method. The results showed that the values of permeability and thermal conductivity were 10 to 10 m and 1.7 to 3.2 W/(m·K), respectively, while the density compressed expanded natural graphite (CENG) varied from 100 to 500 kg/m . The permeability decreased with the increasing density of CENG, whereas the thermal conductivity increased with the increasing density of CENG. Then the thermal conductivity and permeability of granular AC were researched. It was discovered that the thermal conductivity of samples with different grain size almost kept constant at 0.36 W/(m·K) while the density was approximately 600 kg/m . This means that the thermal conductivity was not related to the grain size of AC. The thermal conductivity of CENG was improved by 5 to 10 times compared with that of granular AC. Such a result showed that CENG was a promising host material for AC to improve the heat transfer performance, while the mass transfer performance should be considered in different conditions for utilization of adsorbent.

关键词: permeability     thermal conductivity     expanded nature graphite     activated carbon    

Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1601-8

摘要:

● Electroconductive RGO-MXene membranes were fabricated.

关键词: Reduced graphene oxide     MXene     Membrane     Water permeance     Dye rejection     Electro-assistance    

标题 作者 时间 类型 操作

Uncoupled state space solution to layered poroelastic medium with anisotropic permeability and compressible

Zhiyong AI, Wenze ZENG, Yichong CHENG, Chao WU

期刊论文

Effect of seismic wave propagation in massed medium on rate-dependent anisotropic damage growth in concrete

Alireza DANESHYAR, Hamid MOHAMMADNEZHAD, Mohsen GHAEMIAN

期刊论文

Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay

Lingyun YOU, Zhanping YOU, Kezhen YAN

期刊论文

Degradation of permeability resistance of high strength concrete after combustion

LI Min, QIAN Chunxiang, KAO Hongtao

期刊论文

Analyzing the characterization of pore structures and permeability of diesel contaminated clays under

期刊论文

Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview

Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti

期刊论文

Effect of mineral additives and permeability reducing admixtures having different action mechanisms on

期刊论文

Experimental study on compaction-induced anisotropic mechanical property of rockfill material

Xiangtao ZHANG, Yizhao GAO, Yuan WANG, Yu-zhen YU, Xun SUN

期刊论文

宏观裂缝混凝土中表观气体渗透率的测定

Pierre Rossi

期刊论文

Preparation and permeability of ZSM-35 zeolite membranes on porous stainless steel tubes

ZHU Gang, WANG Jinqu, ZHANG Yan, LU Jinming, XIU Jinghai

期刊论文

Permeability testing of drilling core sample from pavement

WANG Suda, TANG Zhengguang, NING Xiaojun, WU Peiguan, XING Pingyi

期刊论文

中国低渗透油气的现状与未来

胡文瑞

期刊论文

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

期刊论文

Permeability and thermal conductivity of host compressed natural graphite for consolidated activated

Bo TIAN, Liwei WANG, Zhequan JIN, Ruzhu WANG

期刊论文

Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability

期刊论文